
New Generation Conversational Recommendation System Powered by Large
Language Model Agent

Tianyi Li 230202411544141*,
Shaowen Ye 369202411532722, Guanxi Lin 369202411532332, Yu Zhang 369202411532822,

1School of Informatics Xiamen University
2Xiamen University Artificial Intelligence Research Institute

*Team Leader

Abstract

Recommender systems (RS) play a vital role in digital ap-
plications by providing personalized recommendations based
on user preferences and behavior. With the rise of large lan-
guage models(LLMs), conversational recommender systems
(CRS) have developed fastly. However, integrating LLMs
into CRS introduces challenges, including limited context
length, long inference time, and insufficient integration of
collaborative filtering (CF) knowledges. This paper proposes
a new generation of CRS powered by LLMs(LLMRecAgent)
to address these limitations.This architecture adopts a two-
stage retrieval-and-ranking recommendation paradigm to ef-
fectively reduce the context length input to the large model,
meanwhile reducing the computing time. We conducted ex-
periments on three datasets and the results outperform the
baseline models, demonstrating the effectiveness of our ap-
proach. This hybrid approach significantly improves user ex-
perience and recommendation effectiveness in real-time in-
teractions.

Introduction
Recommender systems (RS) have become indispensable
technologies in the fields of e-commerce(Alamdari et al.
2020), online entertainment, and other digital applications.
By analyzing user preferences, historical behavior data, and
contextual information, recommender systems can provide
personalized recommendations, greatly enhancing user ex-
perience and satisfaction. In the early stages, traditional rec-
ommendation systems relied on collaborative filtering(Wang
et al. 2017) and content-based recommendation algorithms.
With the development of deep learning, they have gradually
evolved into more complex hybrid models.

In recent years, users have increasingly preferred to in-
teract with systems through natural language dialogue in-
terfaces, which has constantly raised the design require-
ments for recommender systems. Compared to simple rec-
ommendation lists, users expect systems to understand and
respond to their complex and changing needs in real time.
This trend has driven the development of conversational rec-
ommender systems (CRS), transforming recommender sys-
tems from mere information delivery tools into intelligent

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

dialogue partners capable of understanding user intents and
engaging in multi-turn interactions.

Although large language models (LLMs) have shown
great potential in recommender systems, their application
still faces several challenges and limitations. First, LLMs
are typically pretrained on vast amounts of general text data
from the internet, which gives them broad cross-domain un-
derstanding and rich world knowledge. However, this gener-
alization can also mean that they may fall short when dealing
with fine-grained domain-specific knowledge, especially in
highly specialized and complex areas. For instance, in fields
like healthcare, law, or finance, user behavior, and needs
are often highly specialized, and the precise knowledge re-
quired in these domains may not be adequately reflected in
the LLMs’ pre-trained data, resulting in poor performance
when capturing and processing such specific information.

Large language models (LLMs), such as GPT-3(Brown
2020) and PaLM(Chowdhery et al. 2023), have made sig-
nificant breakthroughs in the field of natural language gen-
eration. As users’ demand for personalization and natu-
ral interaction continues to increase, integrating LLMs into
recommender systems have become a promising solution.
This integration not only improves the user experience but
also enhances the quality of recommendations. For exam-
ple, through dialogue with LLMs, the system can better un-
derstand users’ deep-level needs and provide more targeted
and persuasive recommendations. Such interaction not only
makes users feel more fluent in conversing with the system
but also reduces information asymmetry issues during the
recommendation process, enhancing user trust and reliance
on the system.

Secondly, LLMs face difficulties in retaining user prefer-
ence information over multi-turn conversations. In conver-
sational recommender systems, users’ preferences are often
dynamic, becoming clearer as the dialogue progresses. How-
ever, LLMs lack effective mechanisms to retain and track
user preference information throughout the conversation, es-
pecially in extended multi-turn dialogues. This loss of infor-
mation leads to a reduction in the level of personalization
in recommendations, negatively impacting the user experi-
ence. Additionally, since LLMs must reprocess the dialogue
context each time recommendations are generated, this can
result in unnecessary redundant computations and inefficient
recommendation results.



Third, LLMs have limitations in incorporating traditional
collaborative filtering (CF) information. CF is one of the
core methods in recommender systems, generating person-
alized recommendations by analyzing similarities in user
behaviors. However, LLMs, while excelling in natural lan-
guage processing, do not naturally handle the logic of col-
laborative filtering. They rely more on language generation
and semantic understanding, failing to effectively integrate
interaction data between users, which limits the improve-
ment of recommendation performance.

To address these challenges, we aim to propose a conver-
sational recommendation system powered by large language
model agent.

First, the system utilizes external tools to compensate for
LLMs’ deficiencies in domain-specific knowledge. By inte-
grating domain-specific models or knowledge bases, the sys-
tem can dynamically acquire and apply specialized knowl-
edge, enhancing the accuracy of recommendations.

Secondly, the system introduces a memory mechanism to
store and track user preference information. This mechanism
allows the system to record and update users’ historical be-
haviors and conversational content throughout multi-turn di-
alogues, ensuring that the model can offer personalized rec-
ommendations based on the user’s specific needs in subse-
quent conversations. This not only improves the user experi-
ence but also reduces the burden on users to repeat the same
information in each interaction. Additionally, the memory
mechanism ensures the continuity of user information across
long-term interactions, enabling the system to deliver more
customized services.

Lastly, this paper proposes embedding collaborative fil-
tering outputs into the LLMs’ prompts, thus combining
the strengths of LLMs’ language understanding capabilities
with the advantages of collaborative filtering. By incorpo-
rating collaborative filtering results into the contextual input
for LLMs, the system can generate recommendations that
not only reflect the user’s current conversational needs but
also leverage similar users’ behavior patterns, resulting in
more personalized and relevant recommendations. Collab-
orative filtering results serve as an additional context that
helps the LLM consider both the user’s historical prefer-
ences and the behaviors of others, producing recommenda-
tions that are better aligned with the user’s individual needs.

Related Works
In recent years, with the rapid development of LLMs in the
field of natural language processing, an increasing number
of researchers have started to explore their potential appli-
cations in recommendation systems. LLMs’ strong capabili-
ties in semantic understanding, feature extraction, and inter-
activity can effectively enhance the performance of recom-
mendation systems. In the field of recommendation systems,
the applications of LLMs can currently be divided into two
categories: traditional recommendation systems and conver-
sational recommendation systems.

Traditional Recommender System
In traditional recommendation systems, the recommenda-
tion mechanism primarily relies on users’ past behavior data

to predict their preferences for specific items. In this con-
text, LLMs are usually integrated into the recommender sys-
tems as feature extractors.(Zhao et al. 2024) By analyzing
the contextual information of items and users’ historical be-
havior, embedding vectors are generated to represent users’
interests and item characteristics, thereby improving the ac-
curacy and personalization level of recommendations. This
approach effectively combines the natural language under-
standing capability of LLMs with traditional recommenda-
tion mechanisms, further enriching the feature dimensions
and user profiles of the recommender systems.(Chen, Chen,
and Wang 2015)

Additionally, some methods directly utilize LLMs as rec-
ommendation engines, which means the input sequence can
include users’ profiles, item descriptions, and interaction
history, among other information(Li et al. 2018). The model
generates a list of recommended items directly after receiv-
ing the input. This method not only makes the recommenda-
tion system more flexible but also shows great potential in
generating recommendation systems(Lu et al. 2015). How-
ever, such applications also face challenges in terms of the
high computational resource demands of LLMs and real-
time optimization.

Conversational Recommender System
Compared to traditional recommender systems, conversa-
tional recommender systems (CRS) have higher require-
ments in terms of interaction experience and personalized
demand fulfillment. CRS not only needs to accurately cap-
ture user preferences but also dynamically generate interac-
tive content that meets their needs .Despite advancements,
current conversational recommender systems often rely on
static rules or predefined models that lack adaptability to dy-
namic user preferences and complex dialogue contexts. This
limitation means CRS struggles to adjust in real-time to di-
verse user requests and preferences as they evolve during
the conversation. As a result, they often fall short of deliver-
ing highly personalized recommendations that align with the
nuanced and evolving needs of individual users. However,
these methods cannot achieve accurate personalized recom-
mendations. In this study, we will focus on exploring the ap-
plication of LLMs in conversational recommender systems,
aiming to enhance the system’s language understanding and
generation capabilities in multi-turn interactions, making it
more flexible and intelligent in complex dialogue scenarios.

Enhancing LLMs
The scaling up of parameters and data has led to significant
advancements in the capabilities of large language models
(LLMs), including in-context learning(Rubin, Herzig, and
Berant 2021), instruction following(Zhou et al. 2024), and
improved planning and reasoning abilities. In recommender
systems, the application of LLMs is rapidly emerging as a
growing trend.

As models exhibit emergent intelligence, researchers have
begun exploring the potential of LLMs as autonomous
agents(Jin et al. 2024), enhanced with memory modules,
planning capabilities, and tool-using skills. For instance, re-
cent studies have integrated external memory into LLMs,



enabling them to grow and learn over time. In terms of
planning, methods like Chain-of-Thought (CoT) reasoning
and ReAct(Yao et al. 2022)promote step-by-step reasoning,
while approaches like Tree-of-Thought (ToT) and Graph-of-
Thought (GoT)(Besta et al. 2024) introduce multi-path rea-
soning to ensure consistency and accuracy. Techniques like
Self-Refine (Madaan et al. 2024) and Reflexion(Shinn et al.
2024) help LLMs reflect on mistakes to enhance their future
problem-solving abilities.

To further extend domain-specific skills, several studies
have explored guiding LLMs to use external tools, such as
web search engines, mathematical tools(Shinn et al. 2024),
code interpreters, and visual models(Liu et al. 2024). To the
best of our knowledge, this paper is the first to explore the
LLM + tools paradigm within the field of recommender sys-
tems.

Methods
In the most classic recommendation task—sequential
recommendation—fine-tuning pre-trained large models for
generative recommendation has become a very popular and
cutting-edge method. This approach leverages the powerful
capabilities of large models to generate recommended items
that match users’ interests, significantly improving the effec-
tiveness and accuracy of the recommendation system. How-
ever, directly using large models to generate recommended
items faces several key challenges:

First, user historical interaction sequences are typically
very long, resulting in excessively large item sequences be-
ing input into the large model. This not only makes the input
difficult for the model to handle, but may also lead to infor-
mation loss or computational overload during the model’s
inference process. Secondly, the inference speed of large
models is relatively slow, particularly when faced with a
large number of user requests, making it difficult to respond
quickly and thereby impacting user experience and system
responsiveness.

To address these issues, we propose LLMRecAgent. This
architecture adopts a two-stage retrieval-and-ranking recom-
mendation paradigm to effectively reduce the context length
input to the large model. First, a retrieval module filters out
a subset of items most relevant to the user’s historical in-
teractions from a large pool of candidate items. Then, the
large language model ranks and generates recommendations
based on this refined subset. This two-stage design not only
reduces the length of the item sequence input to the large
model, avoiding the computational burden caused by ex-
cessively long contexts, but also improves inference speed
while ensuring high recommendation quality.

Overall Architecture
The overall process is divided into six stages:

User Request: The user initiates a recommendation re-
quest through natural language interaction, such as ”Can
you recommend me a movie?”. At this stage, the large lan-
guage model (LLM) agent receives and processes the user’s
request. This step serves as the entry point for generating
personalized recommendations by interpreting the user’s in-
tent.

Recall Stage: After identifying relevant item categories
(e.g., ”movies”) from the user’s request, the LLM agent
queries a large-scale item database to recall all items re-
lated to the user’s needs. This step ensures that the system
retrieves a comprehensive set of candidates as the basis for
subsequent processing.

Retrieval Stage: The recalled candidate set is input into
the retrieval module, which utilizes an efficient pre-trained
sequential recommendation model, such as SASRec, to fur-
ther filter and refine the candidate items. SASRec leverages
the user’s historical interaction data to quickly generate a
concise subset of candidate items. Compared to the LLM,
SASRec offers the advantage of faster response times, mak-
ing it well-suited for real-time recommendations. Addition-
ally, the retrieval module incorporates user interaction his-
tory to construct prompts, which are used as critical contex-
tual inputs for the next stage.

Ranking Stage: The refined candidate item subset, along
with the user’s historical interaction data, is structured into
prompts and input into the LLM for ranking. The LLM per-
forms deep semantic understanding of the user’s historical
behavior and comprehensive semantic modeling of the can-
didate items. By capturing fine-grained correlations between
user needs and candidate items, the LLM re-ranks the items
to determine their relevance and priority.

Recommendation Generation: The highly ranked item
subset is used by the LLM to generate natural language rec-
ommendation results. These results are presented to the user
in a conversational manner, such as ”Sure! I guess you like
Star Wars...”. This stage not only delivers personalized rec-
ommendation content but also enhances the naturalness and
interpretability of the system through the use of conversa-
tional language.

User Feedback and Iterative Optimization. The user’s
interactions with the recommended results, such as clicks,
ratings, or skips, are recorded and incorporated into the
user’s historical interaction data. This feedback is fed back
into the system to update user profiles and optimize the re-
call, retrieval, and ranking stages. By incorporating an itera-
tive feedback mechanism, the system dynamically adapts to
changes in user preferences, enabling continuous improve-
ment in recommendation quality.

Text Enhanced Retriever
Traditional recommendation systems often rely solely on
item ID features while neglecting the rich semantics con-
tained in textual information about items. This limitation
may lead to suboptimal performance in terms of recommen-
dation diversity and novelty. To address this issue, this study
proposes leveraging item textual information (e.g., titles, de-
scriptions) to enhance the effectiveness of recommendation
systems. The specific approach is as follows.

Text Feature Extraction: A text encoder (in this study,
distilbert-base-uncased) is used to encode item textual infor-
mation and extract its semantic features. These features cap-
ture the latent semantic relationships between items, thereby
compensating for the limitations of relying solely on item ID
features.



Figure 1: Overall process of Conversational Recommendation System Powered by Large Language Model Agent.

Embedding Layer Initialization: The extracted text fea-
tures are used to initialize the embedding layer of the re-
trieval module. This ensures that the retrieval module in-
corporates textual semantic information from the begin-
ning, providing a richer feature representation for subse-
quent model training.

Joint Training: During model training, the retrieval mod-
ule and the embedding layer are jointly optimized. Through
backpropagation, both the text embeddings and the parame-
ters of the retrieval module are gradually updated. This pro-
cess not only integrates the textual features into the retrieval
module but also aligns them closely with the recommenda-
tion task, further enhancing the retrieval performance.

By incorporating textual information into the recommen-
dation system, the proposed method improves the system’s
ability to capture semantic relationships between items, en-
hances its handling of long-tail items and cold-start scenar-
ios, and ultimately boosts overall recommendation perfor-
mance.

Figure 2: Using the text enhanced retrieval module

LLMRecAgent Pretraining
Since large language models are not inherently trained on
recommendation system data, they may struggle to fully
capture the fine-grained correlations between user historical
interactions and candidate items when performing specific
ranking tasks, resulting in suboptimal ranking performance.
To address this issue, the large model can be fine-tuned on
recommendation system-specific data, enabling it to better
adapt to and understand ranking tasks. In this study, we fine-
tune the model using constructed prompts as instructions
and positive samples as responses, optimizing the model for
instruction-based tasks. Additionally, the LoRA(Hu et al.
2021) method is employed to reduce the number of train-
able parameters during fine-tuning.

Experiments
Datasets
Our model is evaluated on the following datasets:

• ML-100k: A benchmark dataset for movie recommenda-
tion with around 100k user-item interactions (Harper and
Konstan 2015).

• Beauty: A product review dataset from the Amazon web-
site consisting of user feedback on Beauty products (He
and McAuley 2016; McAuley et al. 2015).

• Games: A video game dataset from Amazon with user
reviews and ratings on video game products (He and
McAuley 2016; McAuley et al. 2015).

For preprocessing, we follow (Yue et al. 2022; Yang et al.
2023) to construct input sequences in chronological order
and iteratively filter users and items that are fewer than 5
interactions (i.e., 5-core). Items without metadata (i.e., title)
are also filtered. We report the statistics (i.e., users, items,
interactions, sequence length, and dataset density) in Table
2.



ML-100k Beauty Games
GRU BERT LRU SAS SAS-T GRU BERT LRU SAS SAS-T GRU BERT LRU SAS SAS-T

M@5 0.0276 0.0514 0.0337 0.0447 0.0523 0.0271 0.0215 0.0400 0.0433 0.0485 0.0432 0.0281 0.0506 0.0535 0.0600
N@5 0.0317 0.0604 0.0393 0.0503 0.0633 0.0325 0.0249 0.0460 0.0501 0.0550 0.0513 0.0330 0.0598 0.0642 0.0714
R@5 0.0448 0.0881 0.0560 0.0673 0.0922 0.0491 0.0355 0.0644 0.0707 0.0748 0.0762 0.0479 0.0880 0.0970 0.1061
M@10 0.0321 0.0551 0.0378 0.0508 0.0586 0.0301 0.0236 0.0433 0.0470 0.0528 0.0488 0.0317 0.0568 0.0604 0.0671
N@10 0.0433 0.0689 0.0495 0.0659 0.0759 0.0399 0.0302 0.0541 0.0592 0.0654 0.0651 0.0419 0.0749 0.0812 0.0887
R@10 0.0817 0.1137 0.0881 0.1169 0.1224 0.0722 0.0522 0.0897 0.0990 0.1071 0.1193 0.0755 0.1347 0.1497 0.1599
M@20 0.0362 0.0570 0.0442 0.0560 0.0633 0.0324 0.0251 0.0456 0.0495 0.0528 0.0525 0.0345 0.0614 0.0652 0.0723
N@20 0.0582 0.0762 0.0718 0.0849 0.0893 0.0482 0.0358 0.0627 0.0682 0.0754 0.0786 0.0519 0.0917 0.0985 0.1052
R@20 0.1410 0.1426 0.1746 0.1923 0.2034 0.1050 0.0741 0.1241 0.1348 0.1471 0.1729 0.1151 0.2015 0.2182 0.2273

Table 1: Performance comparison of different models on ML-100k, Beauty, and Games datasets, with the best results marked
in bold and second best results underlined.

Datasets Users Items Interact. Length Density

ML-100k 610 3,650 100k 147.99 4e-2
Beauty 22,332 12,086 198K 8.87 7e-4
Games 15,264 7,676 148K 9.69 1e-3

Table 2: Dataset statistics after preprocessing.

Baseline Methods

We adopt multiple state-of-the-art sequential recom-
menders, which include RNN models (i.e. GRU4Rec),
transformer-based recommenders (i.e. SASRec,
BERT4Rec) and linear recurrence-based LRURec.

• GRU4Rec: GRU4Rec is an RNN-based model that
leverages GRU modules for sequential recommendation
(Hidasi et al. 2016).

• SASRec: SASRec adopts unidirectional attention to pro-
cess input at a sequence level to generate the next items
(Kang and McAuley 2018).

• BERT4Rec: A bidirectional attention-based recom-
mender model, BERT4Rec is trained via predicting
masked items (Sun et al. 2019).

• LRURec: An efficient sequential recommender based on
linear recurrence.(Yue et al. 2024).

Evaluation

In our evaluation, we follow the leave-one-out strategy
and in each data example, we use the last item for test-
ing, the second last item for validation, and the rest items
for training. The evaluation metrics are mean reciprocal
rank (MRR@k), normalized discounted cumulative gain
(NDCG@k) and recall (Recall@k) with k ∈ {5, 10, 20}.
We save the model with the best validation scores for evalu-
ation (Recall@10 for retrieval and NDCG@10 for ranking),
where predictions are ranked against all items in the dataset.

Implementation
We choose Llama2-7b(Touvron et al. 2023) as the rerank
model. The retriever models are trained with AdamW op-
timizer using the learning rate of 0.001 and the maximum
epoch of 100. Validation is performed every 500 iterations
and early stopping is triggered if validation performance
does not improve in 20 consecutive rounds. We used 200 as
maximum length for ML-100k and 50 for the other datasets.
For our ranker, we use maximum 20 history items and rank
the top-20 candidates from the retriever model. The title
length is truncated if it exceeds 32 tokens. We adopt QLoRA
to quantize the Llama 2-based ranker and adopt 8 as LoRA
dimension, 32 as α as well as 0.05 dropout. The LoRA learn-
ing rate is 1e-4 with target modules being the Q and V pro-
jection matrices. The model is tuned for 1 epoch and vali-
dated every 100 iterations. Similarly, the model with the best
validation performance is saved for test set evaluation.

Retriver Comprision Results
The table 1 compares the performance of five recommenda-
tion models (GRU, BERT, LRU, SAS, and SAS-T) across
three datasets: ML-100k, Beauty, and Games. The models
are evaluated using multiple metrics. In the experimental re-
sults, we can observe that SASRec performs the best. Note
that our retrieval module is model-agnostic, meaning we
can choose any high-performing and efficient model for the
retrieval task. Therefore, in this paper, we select the top-
performing SASRec as the retrieval module for text aug-
mentation, and the model after text augmentation is labeled
as SAS-T.

Across all three datasets, SAS-T consistently outperforms
the other models, achieving the highest scores in most met-
rics. SAS follows closely behind, often securing second
place, while BERT also shows competitive performance,
particularly in the ML-100k and Games datasets. GRU and
LRU generally perform the weakest, with GRU especially
trailing in many categories.

Overall, SAS-T is the most effective model for recom-
mendation tasks, demonstrating strong performance in both



precision and recall across different datasets, while SAS and
BERT offer solid alternatives. GRU and LRU are less com-
petitive in comparison.

ML-100k
GRU BERT LRU SAS SAS-T LLMRecAgent

M@5 0.1639 0.0887 0.1449 0.1965 0.2022 0.2184
N@5 0.1607 0.1032 0.1793 0.2356 0.2498 0.2693
R@5 0.2329 0.1477 0.2833 0.3544 0.3879 0.4227
M@10 0.1485 0.1054 0.1596 0.2384 0.2477 0.2623
N@10 0.1886 0.1435 0.2147 0.3367 0.3508 0.3766
R@10 0.3188 0.2720 0.3927 0.6654 0.6972 0.7560

Table 3: Recommendation performance on the valid retrieval
subset, in which the ground truth item is among the top 20
retrieved items. The best results are marked in bold and sec-
ond best results are underlined.Note that SAS-T is the text-
enhanced SASRec proposed in this paper.

Ranker Comprision Results
We perform further ranking on a subset of 20 candidate sam-
ples that include positive samples, and the experimental re-
sults are shown in the table 3. The table 3 presents the rec-
ommendation performance of different models on the ML-
100k dataset. Across all metrics, LLMRecAgent outper-
forms the other models by a significant margin. It achieves
the highest scores for both M@5 (0.2184), N@5 (0.2693),
and R@5 (0.4227), as well as for the top-10 recommenda-
tions, with scores of M@10 (0.2623), N@10 (0.3766), and
R@10 (0.7560). This consistent performance across both
top-5 and top-10 recommendations demonstrates the supe-
rior effectiveness of LLMRecAgent in capturing relevant
items and placing them higher in the ranking.

SAS-T follows closely behind, securing second place in
most cases. It achieves the second-best results for M@5
(0.2022) and N@5 (0.2498), as well as for M@10 (0.2477),
N@10 (0.3508), and R@10 (0.6972). Although slightly be-
hind LLMRecAgent, SAS-T still shows strong performance,
particularly in ranking metrics like R@10, where it main-
tains a substantial gap over the other models.

The experimental results demonstrate that the proposed
LLMRecAgent significantly improves the model’s perfor-
mance after ranking, indicating that large models can effec-
tively capture personalized information from text. By utiliz-
ing the retrieval module to search through the entire can-
didate item set, the context length inputted into the large
model is effectively reduced, thereby improving the infer-
ence speed of the large model.

Conclusion
To address the issues of excessive context length and slow
inference speed in LLM-based conversational recommenda-
tion systems, an innovative two-stage architecture has been
proposed—LLMRecAgent. This architecture uses a retrieval
module to filter out a subset of items relevant to the user’s

historical interactions, reducing the context length input to
the large model. Then, the large language model is used to
rank and generate recommendations based on this refined
subset. This approach not only reduces the computational
burden but also improves inference speed, while ensuring
high recommendation quality.

Acknowledgments
Thank you to both the teacher and the teaching assistants
for all your hard work this semester. The teacher’s lectures
have always been able to break down complex deep learning
concepts in a clear and engaging way. Even though some of
the content was challenging, your sense of humor made it
easier for us to absorb the knowledge without even realizing
it. Your teaching style is approachable and really helped us
better understand many of the concepts.

The teaching assistants’ support has been invaluable as
well. Your careful grading of assignments and willingness
to answer students’ questions ensured that we could keep
up with the course material. Your responsible and dedicated
attitude made us feel well-supported throughout the learning
process. Thank you for all your help!

References
Alamdari, P. M.; Navimipour, N. J.; Hosseinzadeh, M.;
Safaei, A. A.; and Darwesh, A. 2020. A systematic study
on the recommender systems in the E-commerce. Ieee Ac-
cess, 8: 115694–115716.
Besta, M.; Blach, N.; Kubicek, A.; Gerstenberger, R.;
Podstawski, M.; Gianinazzi, L.; Gajda, J.; Lehmann, T.;
Niewiadomski, H.; Nyczyk, P.; et al. 2024. Graph of
thoughts: Solving elaborate problems with large language
models. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 38, 17682–17690.
Brown, T. B. 2020. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165.
Chen, L.; Chen, G.; and Wang, F. 2015. Recommender sys-
tems based on user reviews: the state of the art. User Mod-
eling and User-Adapted Interaction, 25: 99–154.
Chowdhery, A.; Narang, S.; Devlin, J.; Bosma, M.; Mishra,
G.; Roberts, A.; Barham, P.; Chung, H. W.; Sutton, C.;
Gehrmann, S.; et al. 2023. Palm: Scaling language model-
ing with pathways. Journal of Machine Learning Research,
24(240): 1–113.
Harper, F. M.; and Konstan, J. A. 2015. The MovieLens
Datasets: History and Context. ACM Trans. Interact. Intell.
Syst., 5(4).
He, R.; and McAuley, J. 2016. Ups and Downs: Mod-
eling the Visual Evolution of Fashion Trends with One-
Class Collaborative Filtering. In Proceedings of the 25th
International Conference on World Wide Web, WWW ’16,
507–517. Republic and Canton of Geneva, CHE: Interna-
tional World Wide Web Conferences Steering Committee.
ISBN 9781450341431.
Hidasi, B.; Karatzoglou, A.; Baltrunas, L.; and Tikk, D.
2016. Session-based Recommendations with Recurrent
Neural Networks. arXiv:1511.06939.



Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang,
S.; Wang, L.; and Chen, W. 2021. Lora: Low-rank adaptation
of large language models. arXiv preprint arXiv:2106.09685.
Jin, H.; Huang, L.; Cai, H.; Yan, J.; Li, B.; and Chen, H.
2024. From llms to llm-based agents for software engi-
neering: A survey of current, challenges and future. arXiv
preprint arXiv:2408.02479.
Kang, W.-C.; and McAuley, J. 2018. Self-attentive sequen-
tial recommendation. In 2018 IEEE international confer-
ence on data mining (ICDM), 197–206. IEEE.
Li, Z.; Zhao, H.; Liu, Q.; Huang, Z.; Mei, T.; and Chen, E.
2018. Learning from history and present: Next-item recom-
mendation via discriminatively exploiting user behaviors. In
Proceedings of the 24th ACM SIGKDD international confer-
ence on knowledge discovery & data mining, 1734–1743.
Liu, X.; Zhou, T.; Wang, C.; Wang, Y.; Wang, Y.; Cao, Q.;
Du, W.; Yang, Y.; He, J.; Qiao, Y.; et al. 2024. Toward the
unification of generative and discriminative visual founda-
tion model: a survey. The Visual Computer, 1–42.
Lu, J.; Wu, D.; Mao, M.; Wang, W.; and Zhang, G. 2015.
Recommender system application developments: a survey.
Decision support systems, 74: 12–32.
Madaan, A.; Tandon, N.; Gupta, P.; Hallinan, S.; Gao, L.;
Wiegreffe, S.; Alon, U.; Dziri, N.; Prabhumoye, S.; Yang,
Y.; et al. 2024. Self-refine: Iterative refinement with self-
feedback. Advances in Neural Information Processing Sys-
tems, 36.
McAuley, J.; Targett, C.; Shi, Q.; and van den Hengel, A.
2015. Image-Based Recommendations on Styles and Substi-
tutes. In Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information
Retrieval, SIGIR ’15, 43–52. New York, NY, USA: Associ-
ation for Computing Machinery. ISBN 9781450336215.
Rubin, O.; Herzig, J.; and Berant, J. 2021. Learning to
retrieve prompts for in-context learning. arXiv preprint
arXiv:2112.08633.
Shinn, N.; Cassano, F.; Gopinath, A.; Narasimhan, K.; and
Yao, S. 2024. Reflexion: Language agents with verbal re-
inforcement learning. Advances in Neural Information Pro-
cessing Systems, 36.
Sun, F.; Liu, J.; Wu, J.; Pei, C.; Lin, X.; Ou, W.; and Jiang,
P. 2019. BERT4Rec: Sequential recommendation with bidi-
rectional encoder representations from transformer. In Pro-
ceedings of the 28th ACM international conference on infor-
mation and knowledge management, 1441–1450.
Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.;
Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale,
S.; et al. 2023. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288.
Wang, H.; Zhang, P.; Lu, T.; Gu, H.; and Gu, N. 2017. Hy-
brid recommendation model based on incremental collabo-
rative filtering and content-based algorithms. In 2017 IEEE
21st international conference on computer supported coop-
erative work in design (CSCWD), 337–342. IEEE.
Yang, F.; Chen, Z.; Jiang, Z.; Cho, E.; Huang, X.; and Lu, Y.
2023. PALR: Personalization Aware LLMs for Recommen-
dation. arXiv:2305.07622.

Yao, S.; Zhao, J.; Yu, D.; Du, N.; Shafran, I.; Narasimhan,
K.; and Cao, Y. 2022. React: Synergizing reasoning and act-
ing in language models. arXiv preprint arXiv:2210.03629.
Yue, Z.; Wang, Y.; He, Z.; Zeng, H.; McAuley, J.; and Wang,
D. 2024. Linear recurrent units for sequential recommenda-
tion. In Proceedings of the 17th ACM International Confer-
ence on Web Search and Data Mining, 930–938.
Yue, Z.; Zeng, H.; Kou, Z.; Shang, L.; and Wang, D. 2022.
Defending Substitution-Based Profile Pollution Attacks on
Sequential Recommenders. In Proceedings of the 16th ACM
Conference on Recommender Systems, RecSys ’22, 59–70.
New York, NY, USA: Association for Computing Machin-
ery. ISBN 9781450392785.
Zhao, Z.; Fan, W.; Li, J.; Liu, Y.; Mei, X.; Wang, Y.; Wen,
Z.; Wang, F.; Zhao, X.; Tang, J.; et al. 2024. Recommender
systems in the era of large language models (llms). IEEE
Transactions on Knowledge and Data Engineering.
Zhou, W.; Ou, Y.; Ding, S.; Li, L.; Wu, J.; Wang, T.;
Chen, J.; Wang, S.; Xu, X.; Zhang, N.; et al. 2024. Sym-
bolic learning enables self-evolving agents. arXiv preprint
arXiv:2406.18532.


